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PLASTIC DEFORMATION UNDER A GENERALIZED 

PROPORTIONAL LOADING 

K. N. Rusinko and S. A. 8hlyakhov UDC 539.376 

Plastic deformation is mainly the resul t  of the displacement of one par~ of a crystal  with respec~ to 
another. This lat ter  specified the creation of physical theories of residual deformations within the framework 
of the slip concept [1]. On the basis of one such model, an attempt is made in [2, 3] to set up a connection be- 
tween the s t ress  and strain in time. To do this, a t empe ra tu r e - t ime  operator  was introduced into the govern~ 
ing relationships. The operator  is introduced from the following physical considerations. 

As is known, plastic flow in a material  i s  developed extremely inhomogeneously and results in the ap- 
pearance of local peak s t resses  [4-7]. According to [5], the peak s t resses  govern the resistance r plastic 
deformation to a significant degree. F rom an analysis of the experimental data [5-7], the deduction can be 
made that this s t ress  microinhomogeneity, meaning also the resistance to plastic deformation, depends sub- 
stantially on the loading and temperature  modes. A r ise  in the loading rate and a reduction in the f emperature 
result  in an increase in the local peak s t ress  fields, the appearance of significant elastic distortions of the 
crystal  lattice. Such an increase in the microinhomogeneity results in an increase in the resistance to plastic 
deformation, as experiments show [4, 5]. 

However, the role of the peak s t resses  is not only to delay the development of plastic deformation. It 
follows f rom [6, 7] that the peak s t resses  exceeding the mean level are unstable and relax. This lat ter  s p e d -  
ties numerous effects on the macrolevel,  the relaxation of macros t resses ,  the delay in fluidity and creep, etc. 
The scalar  measure, the t e m p e r a t u r e - t i m e  integral operator  i, is taken as the microinhomogeneity charac- 
ter is t ic  of the s t ress  state in a homogeneous continuous model of a solid. An approach to obtaining the operator 
I that is somewhat different f rom [2, 3] is proposed in this paper. 

1. Let us represent  an element of a polycrystalline body consisting of a large number of small particles 
in which the s t resses  are  homogeneous and to which the mechanics of a continuous medium is applicable. 

Let the s t resses  in part icles at a specific time t = s  receive the increment 
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where  ~r~j(s) is the inc rement  in the mean level  of the m a c r o s t r e s s e s ,  and Aq]j(S) is the deviation f r o m  the 
mean level.  

The las t  t e r m  in (1.1) specif ies  the nonuntformity in the s t r e s s  state.  We give the inc remen t  Aq|j(s) a f t e r  
a cer ta in  t ime in te rva l  AS in the f o r m  

Ao~j (~) = A~b~ (1.2) 

where ~ l  is the ra te  of change in the s t r e s s  component at the macrolevel ,  and Aijld a r e  r andom v a r i a b l e s  

which change f r o m  par t ic le  to par t ic le ,  and cha rac t e r i ze  the deviation of the s t r e s s e s  f r o m  the means in each. 
The fact that a change in some s t r e s s  components impl ies  a change in others  is taken into account in (1.2). 

On the bas is  of the capabil i ty of the peak s t r e s s e s  to re lax,  we take t h e i r  change in t ime in the f o r m  [3] 

d (A~'i; (u)) := --  Ao'ii (u) K (u -- s) du, (1.3) 

where u is  the running t ime (s ~ u <- t), K(u - s) is  a kerne l  that d ec r ea se s  with the passage of t ime and has the 
fo r m  

Z (1.3a) 
K (u -- s) = 2 ( V ; +  VT--- ~) V,~ - ~ '  

X is the homologieal  t empera tu re ,  and a is  a ma te r i a l  constant. 

Regular  4a'a+ 4 u - s  and s ingular  @ par t s  can be ex t rac ted  in the denominator  of (1.3a). The  singular and 
r egu la r  par t s  separa te ly  desc r ibe  the capaci ty of the m i c r o s t r e s s e s  to relax.  The p resence  of the product  of 
the s ingular  and r egu la r  par t s  makes a kerne l  of the f o r m  (1.3a) sufficiently genera l  and pe rmi t s  descr ib ing  the 
influence of the t e m p e r a t u r e  on the relaxation.  

Integrat ing (1.3) with r e spec t  to u between s and t,  we obtain 

A(r~j (t) = ha~j (s) Q (t, s), Q (t, s ) =  exp [-0"i K (t , s) ds]. (1.4) 

Taking account of (1.2) and (1.4), a f t e r  in tegrat ing (1.1), we obtain the value of the s t r e s s  at an a r b i t r a r y  
par t i c le  fo r  an a r b i t r a r y  t ime 

t 

- w ~.  " ( 1 . 5 )  (lij (t) - ~j (t) + A~ja~ .I (r~ (s) Q (t, s) ds. 
o 

It is  assumed that al l  the numbers  Aijld a re  independent and have the ident ical  distr ibution function P(Aijk/).  
Taking this into account,  we substi tute (1.5) into a known formula  governing the e las t ic  molding energy  Um in a 
body, and executing manipulations according to the method in [3], we obtain an express ion  for  the mathemat ica l  
expectat ion of the molding energy  

= U r n + 7  A ( b o x _  "o ~ )  Q (t, s) ds (~.= _ "o ~ ) Q ( t , s ) d ~  + ( ~  ~L) q ( t , s ) a s  + 
LO 
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~- 6 T~ (t, s) ds + 6 "T~ (t, s) ds -t- 6 "~OQ (t, s) ds ,, (1.6) 

where U ~ is the e las t ic  energy  in an ideal  homogeneous body, A is the var iance  of the r andom var iable  Aijkl 
to the accu racy  of a factor ,  i .e . ,  

, ? (1.7) A = -g--d (A~jhl)2P (Aijk~) dAijh~. 

The second t e r m  in (1.6) is  due to the nonuniformity in the s t r e s s  distribution.  It is also se lected as a s ca l a r  
quantity cha rac te r i z ing  the microinhomogenei ty  of the s t r e s s  state,  i .e . ,  

I = - - ~ A  ( - -@~)O( t , s )ds  + (~.~--'~~ 

" ~ ~ "~o - ~ ~" + (0~ - ~ : )  O (t, s) ds + 0 xuO (t, s) ds -~- ~ t "~O (t, s) ds + a t' :r~zy O (t, s) ds Lb k'a !' 

(1. s) 

where the var iance  A, defined according to (1.7), is l a t e r  taken as a constant of the mater ia l ,  and only the con- 
stant A, and not Aijk/, will en te r  into al l  the subsequent re la t ionships .  

The p a r a m e t e r  I is inse r ted  in the governing re la t ionships  of the theory  of res idua l  s t ra in  in t e r m s  of the 
r e s i s t ance  to plas t ic  shear ,  whose ass ignment  is bas ic  in the slip concept. Dependences between the s t r e s s ,  
s t rain,  and t ime [2, 3] obtained he re  pe rmi t  the descr ip t ion  of a whole set of t ime  effects  at the miero leve l  
under  both s imple and complex loadings. 

2. When the s t r e s s  and s t ra in  a re  cons idered  in t ime,  then the concept of propor t ional  loading requ i res  
ref inement .  ]bet us introduce the concept of general ized propor t ional  loading. In this ease the s t r e s s  com- 
ponents grow propor t ional ly  to some p a r a m e t e r  at a constant ra te  (in the plas t ic  domain). 

Relationships between the s t r e s s ,  s t rain,  and t ime [2, 3] are  obtained mathemat ica l ly  complex for  a 
general ized propor t ional  loading. It is hence logical  to propose simple dependences of the s t ra in  on the s t r e s s  
with t ime taken into account, on the basis  of the theory  of slip. 

Let  us take the propor t ional i ty  of the devia tors  

eU = (ll2)yJxi'su, (2.1) 

where  sij, ei j  a r e  the s t r e s s  and plas t ic  s t ra in  devia tor  components,  while T i and Yi a re  the tangential  s t r e s s  
and shea r  s t ra in  intensi t ies .  They  a re  in terconnected by a re la t ionship independent of the kind of s t r e s s  state:  

?i = Yi(~i, I), (2.2) 

where Yi (~i, I) is a monotonically inc reas ing  function in both arguments ,  

It is es tabl ished exper imenta l ly  that deviations f ro m  s imi la r i ty  of the devia tors  and deviations f r o m  the 
exis tence  of a single s t ra in  curve [8, 9] a re  observed for  propor t iona l  loading outside the fluidity l imits .  As is 
shown in [10], theor ies  based on the slip concept descr ibe  these  deviations.  But they a re  insignificant,  and 
hence, the dependences (2.2) and (2.1) will be used here .  The flmction yi(Ti, I) is se lec ted  so that under unias 
tension the dependence of the s t r e s s  on the s train,  as de te rmined  by (2.1) and (2.2), and the dependence accord -  
ing to the slip concept [3] would agree .  Consequently 

'/i (~i, I) = V 3 k  (i --  l/n) s12 (4~ + t), ~ -- l/~ ~ 
2 F (=~, s)' (2.3) 

(,-) 
- 2 7  , 

where 7 0 a re  constants,  and F(~'i, I) is  a cha rac t e r i s t i c  function of the mater ia l .  The f o r m  of the function F 
ag rees  with that indicated in Sec. 1 above. Here  T o is the shea r  yield point de te rmined  for  low loading ra tes  
(I~0). By adding the e las t i c  to the plas t ic  components in (2.1), we obtain the total  s t rain.  
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There follows that ri =T 0, Yi =0 at the proportionality limit and 77 =1 follows from (2.3). We hence obtain an 
an equation to find the yield point r 0 

/ ':i) 
2 

(2.4) 

Let us examine a particular case of generalized proportional loading, uniaxial tension. 

The parameter  I defined by (1.8) is written in this case in the form 

"0 2 
= + 1 / 7 )  - I (1--X)~(2-- 

(2.5) - / (' + ]'§ 
t t l  l - -k  2 

where t 1 is the time during which the materialyield point is achieved: and ~ i s  the rate of s t ress  change that 
has one value before the yield point (~r ~ =~r~). After it has been reached, the rate ~r~ another value (~r ~ =~r~). 

Stress (r kg/mm 2) " r e l a t i v e  elongation (e, %) diagrams are constructed for different loading and tem- 
perature rates [solid lines in Figs. 1 and 2; the dashes are data from experiments in [11] for aluminum (Fig. 1), 
and tin bronze (Fig. 2)] by using (2.1)-(2.5). The diagrams are constructed for the following loading and tem- 
perature rates: aluminum, {curve 1) &0 =2.3" 10 .3 kg/mm 2. seo, ~ =4.3.103 kg]mm 2. sec for k =0.314 (curve 2); 
tin bronze, (r ~ =180 kg/mm 2. sec (curve 1), ~r ~ =900 kg/mm 2. sec (curve 2), ~ =1800 kg/mm 2. sec for X =0.226 
(curve 3),r 0 =180 kg/mm 2 �9 sec for X =0.376 (curve 4), ir~ =180 kg/mm 2. sec for X =0.455 (curve 5). 

It is seen from a comparison that the dependences proposed describe the experimentally observed in- 
crease in the yield point and degree of hardening with the r ise in the loading rate and diminution: in temperature 
satisfactorily (the yield point is denoted by a cross at each point). The following constants were taken in con- 
structing the curves: for aluminum, G =2700 kg/mm 2, n = 0.4, k=0.014, T~ =3 kg/mm 2 (G is the shear elastic 
modulus) and, for tin bronze, G =2710 kg/mm 2, n=0.49, k=0.017, r ;  =6 kg/mm 2. 
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